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BIOS 6244  Analysis of Categorical Data 
October 17, 2005 Lecture 
 
Exact Inference for Small Samples (Sec 2.6) 
 
In our previous consideration of the χ2, LR, and test for trend, we relied on the χ2 approximation 
to calculate p-values for these test statistics.  Exact approaches that do not require the χ2 
approximation are also available and are to be preferred, even for moderate to large samples. 
 
Fisher’s Exact Test (Sec 2.6.1) 
 
As we saw in our earlier formulation of the problem of testing independence in a 2x2 table, the 
null hypothesis corresponds to an OR of 1.  In 1934, R.A. Fisher proposed a test of this null 
hypothesis that makes use of the exact distribution of the cell counts (rather than the normal 
approximation to the binomial, which results in the χ2 approximation for Pearson’s χ2 test).   In 
order to perform Fisher’s exact test, we must consider the reference set, consisting of all 2x2 
tables with the same row and column totals as the observed table. 
 
Under the Poisson, binomial, or multinomial sampling schemes for the cell counts in a 
contingency table, the appropriate exact distribution for the cell counts in a 2x2 table is the 
hypergeometric.  This distribution is valid only if the row and column totals are fixed. 
 
For given row and column marginal totals, the value of n11 (or any other cell count in the 2x2 
table) determines the other 3 cell counts.  Therefore, we need only consider the exact distribution 
of n11. 
 
In order to be consistent with the original formulation of Fisher’s exact test, we must interchange 
rows and columns in our canonical form for a 2x2 table: 
 

Exposed  Not Exposed 
 

 
n11 

 
n12 

 
n21 

 
n22 

 
 
         n+1        n+2    n 
 
 
(NOTE:  The exact p-value for Fisher’s exact test is unchanged if the rows and columns of the 
2x2 table are interchanged.) 
 
 When OR = 1, the probability mass function for n11 is given by 
 

 
Diseased 
 
Not Diseased 

n1+ 

 
n2+ 
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where the binomial coefficient 
a
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 (read “a choose b”) is given by 
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Recall that in the general case, the hypergeometric distribution is used as a finite population 
alternative to the binomial: 
 
Let N = population size, 
 
 M = # of “successes” in the population, 
 
 n' = sample size 
 
 W = # of successes in a sample of size n'. 
 
Then 
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In the formulation of Fisher’s exact test, 
 
 N = n = total sample size, 
 
 M = n1+ = total # of successes (“diseased” subjects) in the sample, 
 
 n' = n+1 = total # of subjects in Population 1 (“exposed”) in the sample, 
 

W = n11 = # of successes (“diseased”) among the sample from Population 1 (“exposed”). 
 
So, in other words, in Fisher’s formulation, we are treating the sample as a small finite 
population, the “exposed” subjects as a sample from this finite population, and we are inquiring 
about the probability of obtaining a certain number of “diseased” subjects in our “sample “ of 
exposed subjects. 
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To test H0: OR = 1 (i.e., test for independence of rows & columns), we calculate an exact p-value 
based on the observed value of n11.  This is done by summing the hypergeometric probabilities 
for n11 given by Equation (5) over all 2x2 tables in the reference set that are at least as favorable 
to the alternative hypothesis as the observed 2x2 table is. 
 
Suppose that Ha:  OR > 1.  Any 2x2 table with the same marginal row and column totals as the 
observed table that has a count in the (1,1) cell that is greater than or equal to n11 in the observed 
table will be favorable to Ha.  The hypergeometric probability for each of these tables should 
then be included when calculating the upper-tailed p-value. 
 
Fisher’s Tea Taster (Sec 2.6.2) 
 
To illustrate his proposed test, Fisher described the following experiment.  A colleague of 
Fisher’s claimed that, when drinking tea, she could distinguish whether milk or tea was added to 
the cup first.  To test her claim, Fisher designed an experiment in which his colleague tasted 8 
cups of tea; 4 that had milk added first and 4 that had tea added first.  The colleague was told that 
there were 4 cups of tea of each type, and that she should try to select the 4 that had milk added 
first.  The cups of tea were presented to her in random order. 
 
Table 2.8, p. 40, in our text shows the results: 
 

 
 
The null hypothesis H0: OR = 1 is that Fisher’s colleague’s guess was independent of the actual 
order of pouring.  The appropriate alternative hypothesis is Ha: OR > 1 since large values of n11 
indicate that the null hypothesis should be rejected, i.e., that there is a positive association 
between the true order of pouring and her guess.  For this design, the row and column marginal 
totals are fixed since since the colleague knew that 4 cups had milk added first.  The distribution 
of n11 under the null hypothesis in this example is the hypergeometric, defined for all 2x2 tables 
having row and column totals equal to 4.  Thus, the possible values of n11 are {0, 1, 2, 3, 4}.  
Table 2.8, in which there are 3 correct guesses of milk added first, has the following probability 
under H0: 
 

4 4 4! 4!
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The only table in the reference set that is favorable to the alternative Ha: OR > 1 that is more 
extreme than the observed table contains 4 correct guesses.  It has n11 =  n22 = 4 and n12 = n21 = 0 
and probability given by: 
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Table 2.9 contains the entire null distribution of n11 for this problem: 
 

 
 
Thus, the p-value for testing  H0: OR = 1 vs. Ha: OR > 1 for Fisher’s colleague is  
P(3) + P(4) = .014 + .229 = .243, i.e., we accumulate the hypergeometric probabilities for all 2x2 
tables with row and column margins equal to 4 that are favorable to Ha. 
 
This p-value provides no evidence against the null hypothesis of independence.  Therefore, 
Fisher’s colleague does not appear to be able to correctly determine whether milk or tea was 
poured first.  However, note that the small sample size severely limits the ability of Fisher’s 
exact test to detect a departure from the null hypothesis.  The only outcome leading to rejection 
of H0 would have been n11 = 4 (p = .014). 
 
P-Values & Type I Error Probabilities (Sec 2.6.3) 
 
Recall that in applying the χ2 and LR tests of independence, the alternative hypothesis was  
Ha: OR ≠ 1.   
 
For a 2-tailed alternative, we calculate the p-value for Fisher’s exact test by accumulating the 
hypergeometric probabilities of all tables no more likely than the observed table; that is, one adds 
the probabilities of all possible outcomes y such that P(y) ≤ P(n11), where n11 is the observed 
count.  Using the probabilities in Table 2.9 for the tea-tasting example, we sum all probabilities 
that are no greater than P(3) = .229.  This yields 
 

2-tailed p-value = P(0) + P(1) + P(3) + P(4) = .486. 
 



 42

If the marginal totals for either the rows or columns are equal, then the hypergeometric 
distribution is symmetric.  In this case, there is a shortcut for calculating the 2-tailed p-value: we 
simply calculate the appropriate 1-tailed p-value and then double it.  So the 2-tailed p-value for 
Fisher’s exact test in this case is 

 
11 12

11 12

2 x upper tailed p value if n n
p value

2 x lower tailed p value if n n
− − ≥⎧ ⎫

− = ⎨ ⎬− − ≤⎩ ⎭
 

 
In the tea-tasting example, n11 = 3 > 1 = n12, so the 2-tailed p-value = 2 x .243 = .486. 
 
What if we applied the χ2 test to the data in Table 2.8?  We see that in Table 2.9, Agresti has 
calculated the χ2 test statistic corresponding to each of the possible values of n11.  The exact 2-
tailed p-value for the χ2 test is calculated in the same way as for Fisher’s exact test; i.e., we 
accumulate the probabilities of all tables for which the χ2 test statistic is at least as large as the 
observed value (X2 = 2).  These probabilities are calculated using the hypergeometric 
probabilities given in Table 2.9: 
 
     
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2, p. 42, contains a graph of the exact distribution of X2 for the data in Table 2.8: 

 

 
x2 

 
Pr(X = x2) 
 

 
0 
 
2 
 
8 

 
.514 
 
.229 + .229 = .458 
 
.014 + .014 = .028 
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For the data in Table 2.8, X2 = 2.0.  So the exact upper-tailed p-value for the χ2 test is .458 + 
.028 = .486.  Note that this is the same as the exact 2-tailed p-value for Fisher’s exact test.  For 
2x2 tables, the exact p-values for the χ2, LR, and Fisher’s exact test will be identical. 
 
As the row and column totals in the contingency table increase, the calculations for the 
hypergeometric probabilities associated with Fisher’s exact test become more and more tedious 
since the reference set consists of all possible tables with same row and column totals as the 
observed table.  Methods for approximating the p-value for Fisher’s exact test have been 
proposed, but these are no longer necessary since modern statistical packages can handle the 
exact p-value calculations. 
 
(We will discuss how to calculate exact p-values for Fisher’s exact test in the Computer Lab 
session on October 19.) 
 
For small sample sizes, the exact distribution calculated using Equation (5) is highly discrete, in 
the sense that the number of possible values for n11 is relatively small.  As a result, the exact  
p-value also has only a relatively small number of possible values.  For example, for the data in 
Table 2.8, there are only 5 possible p-values  for a 1-sided Fisher’s exact test and only 3 possible 
p-values using the exact version of the χ2 test. 
 
This discretenessof p-values has an impact on the Type I error rate (i.e., the significance level, α) 
for the exact test.  Suppose we want to use α = .05 when testing the null hypothesis, i.e., reject 
H0 if p < .05.  However, because of the discreteness of the test statistic, it is usually not possible 
to conduct an exact test that has α exactly equal to .05.  Recall that α = Pr(reject H0 | H0 is true). 
To perform Fisher’s exact test, we want to choose a rejection region R so that  
Pr(n11 ∈ R | OR  = 1) = .05. However, from Table 2.9, we see that, for a 2-tailed test, the 
rejection region that yields α closest to (but less than) .05 is {0, 4}.  That is, Pr(n11 = 0 or 4) = 
P(0) + P(4) = 2(.014) = .028.  All other choices for R yield a value of α > .05.  For a 1-tailed test, 
the closest we can get is α = .014. 
 
Tests for which the true value of α is less than the nominal (or desired) value of α (typically .05 
in clinical research) are called conservative.  Tests for which the true value of α is greater than 
the nominal value are called liberal. 
 
The conservativeness of exact tests for discrete test statistics can be further illustrated by 
thinking of the p-value itself as a random variable.  For test statistics having a continuous 
distribution (like the χ2), it can be shown that the p-value has a uniform distribution over the 
interval [0,1] if the null hypothesis is true.  In other words, the p-value is equally likely to fall 
anywhere between 0 and 1 and the probability that the p-value falls between any two values  
a and b = b-a.  So, for example, the probability that the p-value falls below .05 is equal to  
.05 – 0 = .05.  Furthermore, the expected p-value under the uniform distribution is .5.  For test 
statistics having a discrete distribution, the p-value also has a discrete distribution and, under the 
null hypothesis, it typically has an expected value greater than .5.  For example, in the tea-tasting 
example, we can calculate the expected 1-tailed p-value using the values in Table 2.9: 
 

E(p-value) = 1(.014) + .986(.229) + .757(.514) + .243 (.229) + .014 (.014) = .685 > .5. 
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So, the exact p-value for Fisher’s exact test for the tea-tasting experiment tends to be too large 
“on average.” 
 
To help diminish the effect of the conservativeness of exact tests for discrete data, one can use a 
slightly different version of the p-value, called the mid p-value.  This is equal to the appropriate 
exact p-value, minus half the point probability of the observed value of the test statistic.  It has an 
expected value of .5 under the null hypothesis, as do p-values for any test statistic having a 
continuous distribution.  For the tea-tasting experiment, using the values in Table 2.9, we find 

the 1-tailed mid p-value for Fisher’s exact test to be 1.243 (.229) .129
2

− = , compared with .243 

for the exact p-value.  For the 2-tailed exact test based on the χ2 test statistic, the mid p-value is 
1.486 - (.458) .257
2

= , compared with .486 for the exact p-value.  (Note that the 2-tailed mid p-

value can be obtained by doubling the 1-tailed mid p-value.)  For the tea-tasting data, the exact 
p-value and mid p-value both yield the same conclusion, but this will not always be the case. 
 
Unlike the exact p-value calculated for a discrete test statistic, using the mid p-value does not 
guarantee that the true significance level will be less than or equal to the nominal level α.  (See 
Problem 2.27, p. 50).  However, the mid p-value-based test usually performs well, and is less 
conservative than the test based on the exact p-value.   
 
In Fisher’s tea-tasting experiment, both the row and column marginal totals were fixed.  In Epi 
studies, the marginal totals for rows and/or columns may be random.  Fisher’s exact test can still 
be applied in these situations by conditioning on the observed row and column totals, thereby 
treating them as fixed.  This “conditional” version of Fisher’s exact test has been shown to also 
perform well.  “Unconditional” test procedures that take the randomness of the row and/or 
column  into account are available in sophisticated statistical packages such as StatXact, but are 
not considered to have any particular advantage over Fisher’s exact test when the mid p-value is 
used.    
 
Exact Confidence Interval for the Odds Ratio (Sec 2.6.4) 
 
In Section 1.3.3, we discussed finding an exact CI for a binomial proportion π.  The approach 
that was recommended there was to include in the 95% CI(π) all values π0 such that H0: π = π0 
would not be rejected using α = .05.  We recommend the same approach in finding an exact  
95% CI(OR).  The issue of “conservativeness” also arises here since an exact 95% CI(OR) will 
tend to have a true confidence coefficient larger than 95%, i.e., our intention is to construct an 
exact 95% CI(OR), but we may actually wind up with a 98% CI(OR).  Basing the CI on those 
values π0 for which H0: π = π0 would not be rejected using the mid p-value approach will reduce 
this conservatism, although the true confidence coefficient may actually be less than 95%. 
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Example (tea-tasting, cont.) 
 
exact 95% CI(OR):    (.21, 626.17) 
 
mid p-based 95% CI(OR): (.31, 308.55) 
 
Note the extreme width of both CI’s, owing to the small sample size (n = 8). 
 
The exact CI(OR) is available in SAS and SPSS and the mid p-based CI is available in StatXact. 
 
 
Exact Tests of Independence for I x J Tables (Sec 2.6.5) 
 
A generalization of Fisher’s exact test, called the Fisher-Freeman-Halton test, is available for  
I x J tables with more than 2 rows or columns.  The multivariate hypergeometric distribution is 
used to calculate p-values for this test.  There are also exact versions of the χ2 and LR tests 
available for these larger tables. 
 
NOTE:  The exact p-values for the χ2, LR, and Fisher’s exact test do not agree for general  
I x J tables, only for 2x2. 
 
 
Example (Oral Lesions in India) 
 
The following data on the location of oral lesions were obtained in house-to-house surveys in 3 
geographical regions of rural India.  The question of interest is whether the distribution of the 
site of oral lesions differs significantly among the 3 regions.  Neither the rows nor columns of 
this table can be ordered in any meaningful way. 
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The following results were obtained: 
 
 
Test 

 
χ2 Approximate 

p-value 
 

 
Exact p-value 

 

 
Mid p-value 

 
χ2 

 
.140 

 
.027 

 
.027 

 
LR 

 
.106 

 
.036 

 
.035 

 
Fisher-Freeman-Halton 

 
-- 

 
.010 

 
.008 

 
 
Note that the mid p adjustment has little effect on the exact p-values. 
 
 
Recall that if the row variable and/or column variable of an I x J table is ordinal, the methods 
described in Sec. 2.5 are preferable to the Fisher-Freeman-Halton test. 

 


