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Commentaries are informative essays dealing with viewpoints of statis-
tical practice, statistical education, and other topics considered to be
of general interest to the broad readership of The American Statistician.
Commentaries are similar in spirit to Letters to the Editor, but they

involve longer discussions of background. issues. and perspectives. All
commentaries will be refereed for their merit and compatibility with these
criteria.

Use of the Correlation Coefficient

With Normal Probability Plots

STEPHEN W. LOONEY and THOMAS R. GULLEDGE, Jr.*

The use of the correlation coefficient is suggested as a tech-
nique for summarizing and objectively evaluating the in-
formation contained in probability plots. Goodness-of-fit
tests are constructed using this technique for several com-
monly used plotting positions for the normal distribution.
Empirical sampling methods are used to construct the null
distribution for these tests, which are then compared on the
basis of power against certain nonnormal alternatives. Com-
monly used regression tests of fit are also included in the
comparisons. The results indicate that use of the plotting
position p; = (i — .375)/(n + .25) yields a competitive
regression test of fit for normality.

KEY WORDS: Shapiro—Wilk test; Shapiro—Francia test;
Filliben test; Plotting position; Empirical power comparison;
Regression tests of fit.

1. INTRODUCTION

Probability plots are frequently recommended for assess-
ing the goodness of fit of a hypothesized distribution (e.g.,
see Nelson 1982, chap. 3; Johnson and Wichern 1982, pp.
152-156; and Snedecor and Cochran 1980, pp. 59-63).
Shapiro and Brain (1981) went so far as to urge that any
formal test for goodness of fit be augmented by the con-
struction of a probability plot, since ‘“the plot can better
describe the data than a single test statistic” (p. 22). We
suggest that a preferable approach for testing goodness of
fit is to examine the probability plot first and then augment
it with a formal hypothesis test that is based on the plot.
Besides providing an objective criterion for interpreting the
plot, such a test also provides a useful summary of the
information contained therein. Of course, other formal hy-
pothesis tests could also be performed for corroboration.

Several authors have proposed formal goodness-of-fit tests
that they claim are based on the information contained in
probability plots. These tests are usually referred to as
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regression tests of fit (Shapiro and Brain 1981, p. 2). For
the normal distribution, these include the tests proposed by
Shapiro and Wilk (1965), Shapiro and Francia (1972), Fil-
liben (1975), and LaBrecque (1977). What these authors
call probability plots, however, are not the plots that are
usually constructed in practice. Instead, they define prob-
ability plots in terms of plotting positions that are not used
by practitioners. The history of this problem is discussed in
Section 2.

In this article, we examine the use of the Pearson product—
moment correlation coefficient as a technique for construct-
ing a test statistic from a realistic version of a normal prob-
ability plot. We construct such a test for several commonly
used plotting positions for the normal distribution and gen-
erate the null distribution for each one using empirical sam-
pling methods. These tests are then compared with other
regression tests of fit in terms of power against various
alternative distributions. Recommendations concerning these
tests are given in Section 3. Section 4 contains a description
of the computational methods used in this study, and Section
5 contains a summary and some discussion of the results.

2. PROBABILITY PLOTS AND
PLOTTING POSITIONS

Let {v)» ¥2)» - - -» Vot denote the order statistics of a
sample from a distribution whose cdf is hypothesized to be
of the form F[(y — wm)/o}, where u and o are location and
scale parameters, respectively. (Note that the v, could be
the order statistics of the transformed sample values after
an apparently appropriate transformation has been made.)
To construct a probability plot, the sample order statistic
Y is plotted (usually on the vertical axis) against x; =
F~'(p;) (usually on the horizontal axis), where p; is an
estimate of F[(v;, — m)/o]. This estimate is called the
plotting position. The two most commonly used plotting
positions are

pi = (G — 5)n 2.1)
(Hazen 1914) and

pi = iln + 1) 2.2)
(Weibull 1939). Many other plotting positions have been
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proposed in the literature, including several that are based
on the mean or median order statistics of the reduced variate
Y - pio.

Let W,;, = (Y;, — w)/o denote the ith order statistic of
the reduced variate, and let E(W,,) and M(W,;) denote its
mean and median, respectively. Shapiro and Wilk (1965),
Shapiro and Francia (1972), and LaBrecque (1977) defined
probability plots in terms of the plotting position

pi = FIEW)], (2.3)
whereas Filliben (1975) defined them in terms of
pPi = F[M(W(i))]- 2.4)

Although several authors have offered justification for the
use of (2.3) (Kimball 1960, Barnett 1975, and Cunnane
1978) or (2.4) (Benard and Bos-Levenbach 1953 and Fil-
liben 1975) as a plotting position, in practice one almost
never uses either. Typically, either (2.1) (Nelson 1979, p. 8)
or (2.2) (Chilko 1978, p. 4) is used; most authors seem to
prefer (2.1).

Some authors, however, have proposed other plotting
positions that are based on approximations of (2.3) or (2.4).
For example, Filliben (1975) suggested using

pizl_mn‘ l=l‘

- (i — .3175)/(n + .365),
i=234,...,.n—1,
= (5, i=mn, (2.5)

as an approximation to (2.4). Several authors, including
Kimball (1960) and Cunnane (1978), have recommended
that an approximation of (2.3) developed by Blom (1958,
p. 71) be used as a plotting position for the normal distri-
bution:

pi = (i = .375)/(n + .25). (2.6)

This plotting position has seen increasing acceptance among
practitioners in recent years; for example, the normal prob-
ability plot produced by the UNIVARIATE procedure of
the Statistical Analysis System (SAS) is based on this plot-
ting position (SAS Institute Inc. 1982, p. 580). Applied
textbooks that recommend the use of (2.6) for the normal
distribution include King (1981, p. 6).

We will restrict our attention in this article to the plotting
positions (2.1), (2.2), and (2.6), since these seem to be the
most commonly used. Many other plotting positions, how-
ever, have been proposed for use with the normal distri-
bution, including those of Benard and Bos-Levenbach (1953),
Tukey (1962), Cunnane (1978), and Dixon (1981, p. 126).

Once the plotting position has been selected and the prob-
ability plot constructed, an objective criterion for inter-
preting the plot is needed. If the hypothesized distribution
is the correct one, then the plot of y;, against x; = F~(p;)
will be approximately linear. Since the Pearson product—
moment correlation coefficient between y,;, and x; is equal
to one if the plot is exactly linear, Filliben (1975) suggested
that one use it to measure the linearity of a probability plot.
Following his lead, we propose the use of the correlation
coefficient in constructing a goodness-of-fit test statistic
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from a plot based on any particular plotting position. Since
the Y,;, are highly correlated and heteroscedastic, the usual
distributional results for the correlation coefficient do not
apply. Instead, empirical sampling methods must be used
to determine the null distribution of the test statistic. Two
of the test statistics already mentioned can be constructed
in this way: the Filliben (1975) test statistic r is the corre-
lation coefficient statistic based on plotting position (2.5),
and the Shapiro—Francia test statistic W' (Shapiro and Fran-
cia 1972) is a squared version of the correlation coefficient
statistic based on plotting position (2.3). In addition, the
test for normality presented in Johnson and Wichern (1982,
pp. 155-156) is a correlation coefficient test based on po-
sition (2.1).

Another procedure for constructing a test statistic from a
probability plot was proposed by Shapiro and Wilk (1965).
They considered the ratio of two estimators of o?: the square
of the generalized least squares estimate of the slope of the
regression line fitted to the probability plot and the sample
variance calculated from the y;’s. If the hypothesized nor-
mal distribution is the appropriate model and the straight
line assumption is correct, then these estimates will be close
to each other, and their ratio will be close to one. Departures
from normality are indicated by values significantly differ-
ent from one. Similarly, LaBrecque (1977) based his tests
for normality on ratios of estimates of o that are appropriate
when certain types of nonlinearity are present in the plot.
We do not consider test statistics based on such ratios in
this article because they do not directly assess the linear
nature of the plot; rather, they are more concerned with the
quality of an estimate of o obtained from the plot. Since
probability plots are more commonly used today for testing
goodness of fit than for estimation, the class of test statistics
based on the correlation coefficient seems more appropriate
for our purposes. The Shapiro—Wilk (1965) test, however,
is included in our discussion for comparison, since it has
been shown to be one of the most powerful tests for nor-
mality (Pearson et al. 1977).

Various authors have proposed other techniques for ob-
jectively evaluating probability plots, including Mage (1982),
Stirling (1982), and Michael (1983). Each suggested ways
of using either the Kolmogorov—Smirnov test statistic or a
modification of it, such as the Lilliefors (1967) statistic, as
an aid in the interpretation of probability plots. Although
these techniques may prove to be useful in a given appli-
cation, they suffer from the same disadvantage as the Sha-
piro-Wilk test: none of them assesses the linearity of the
probability plot as directly as the correlation coefficient
does. For this reason, we do not consider any of these
techniques in this article.

3. RESULTS AND CONCLUSIONS

To compare the powers of the correlation coefficient tests
corresponding to positions (2.1), (2.2), and (2.6) with those
of the Shapiro-Wilk (1965), Shapiro—Francia (1972), and
Filliben (1975) tests for normality, an empirical sampling
study was conducted in which samples of sizes n = 20,
50, and 100 were generated from each of the 25 alternative
distributions used forn = 50 in Filliben’s study. The results



of the study are summarized in Table 1, and computational
details are given in Section 4.

If we restrict ourselves to those tests based on the cor-
relation coefficient, that is, all except the Shapiro—Wilk test,
an examination of Table 1 indicates that for symmetric,
shorter-tailed alternatives, the test based on Hazen’s (1914)
plotting position p; = (i — .5)/n is the most powerful. It
is slightly inferior, however, to the other correlation coef-
ficient tests in terms of power against symmetric longer-
tailed alternatives and skewed alternatives. The test based
on the Blom (1958) position p; = (i — .375)/(n + .25)
has power that is comparable to that of Hazen’s for shorter-
tailed alternatives and is generally the most powerful against
longer-tailed and skewed alternatives. In view of this and
the fact that the Blom position is preferable to the Hazen
position whenever the plot is to be used for estimation pur-
poses (Kimball 1960 and Cunnane 1978), we recommend
that the Blom position be used in constructing normal prob-
ability plots. Table 2 contains percentage points for the
corresponding goodness-of-fit test for n = 3(1)50(5)100.

The Weibull (1939) plotting position p; = i/(n + 1) yields
a test that is generally inferior to the Blom test, especially
against shorter-tailed alternatives, and we do not recom-
mend its use for normal probability plots. The test based
on Blom’s position dominates both the Filliben and Shapiro—
Francia tests, although the dominance is slight in most cases.
Although the Shapiro—Wilk test is certainly the most pow-
erful of these tests against shorter-tailed alternatives, it has
less power than the test based on Blom’s position for some
longer-tailed and skewed alternatives. In general, these re-
sults indicate that the correlation coefficient test based on

the position p; = (i — .375)/(n + .25) is a competitive
regression test of fit for normality.

4. COMPUTATIONAL METHODS

For each of the plotting positions (2.1), (2.2), and (2.6),
a test statistic for the composite hypothesis of normality was
constructed, using the Pearson product—moment correlation
coefficient between the sample order statistics y, and x; =
F~Y(p;), where F denotes the standard normal distribution
function. The inversion of F was accomplished by using
the algorithm given by Abramowitz and Stegun (1964, p.
933, formula 26.2.23). The empirical percentage points of
the null distribution of each of these test statistics were
determined for n = 20, 50, and 100 by generating N =
10,000 normal random samples on the Louisiana State Uni-
versity IBM 370/3081 computer using the GRAND gen-
erator (Brent 1974). N = 10,000 was used because longer
run lengths affected the percentage points only in the fourth
decimal place. These percentage points were smoothed by
replicating each experiment 12 times and taking the average;
therefore, 120,000 samples were generated for each sample
size.

Since only N = 1,000 normal random samples were used
in generating the published percentage points for the Sha-
piro—Francia test for n = 50 (Shapiro and Francia 1972,
p. 215), and since percentage points are not given in their
paper forn = 20andn = 100, the procedure just described
was also used to determine the percentage points for n =
20, 50, and 100 for the Shapiro—Francia test. Calculation
of the order statistic means was achieved by using the al-

Table 1. Empirical 5% Level Power (in %) of Correlation Coefficient Tests Based on Plotting Positions
Power? for n = 20 Power for n = 50 Power for n = 100
Distribution wW F W B H S w F W B H S w F W B H S
Symmetric alternatives shorter-tailed than normal
Arcsine 30 43 47 51 5 73 96 99 99 100 100 100 100 100 100 100 100 100
Johnson bounded, JSB(0, .5) 12 20 23 26 30 45 68 8 88 90 92 99 100 100 100 100 100 100
Tukey A(1.5) 5 9 10 12 15 25 34 57 60 65 70 93 94 98 99 99 100 100
Uniform 4 7 8 9 11 2 24 44 48 53 58 88 85 95 97 98 99 100
Tukey A(.75) 2 4 5 6 7 13 11 25 28 32 36 72 58 79 85 89 91 100
Anglit 1 2 2 3 3 5 1 4 4 6 6 21 5 12 17 20 22 66
Triangular 1 2 2 2 2 3 1 1 2 2 2 9 1 3 4 5 6 32
Symmetric alternatives longer-tailed than normal
Logistic 15 14 14 15 14 11 26 26 24 27 23 14 40 37 36 41 35 13
LaPlace 33 32 32 33 30 26 63 62 60 62 58 42 86 84 84 86 82 54
Johnson unbounded, JSU(0, 1) 50 48 48 49 47 42 83 82 81 83 80 69 97 97 97 97 96 86
Tukey A(-.5) 68 67 67 67 66 62 95 95 95 95 94 90 100 100 100 100 100 99
Cauchy 89 89 89 89 88 86 100 100 100 100 100 99 100 100 100 100 100 100
Tukey A(—1.5) 98 98 98 98 97 97 100 100 100 100 100 100 100 100 100 100 100 100
Skewed alternatives
Weibull (10) 14 15 15 16 15 15 32 35 34 37 3 34 57 60 62 66 63 59
Weibull (3) 3 4 4 4 4 4 3 4 4 5 4 4 4 5 6 7 7 14
Skewed, A(1.5, .5) 15 19 21 23 25 33 56 72 73 77 79 93 98 99 100 100 100 100
Extreme Value Type 1 30 31 31 33 32 32 65 68 68 70 68 68 91 93 93 94 94 92
Half-normal 34 37 38 40 40 44 82 88 89 90 90 95 100 100 100 100 100 100
Power lognormal, PLN(.5) 48 50 51 52 52 52 89 91 91 92 92 93 100 100 100 100 100 100
Extreme Value Type 2(5) 62 64 64 66 65 65 96 97 96 97 97 97 100 100 100 100 100 100
Exponential 76 79 80 81 82 84 100 100 100 100 100 100 100 100 100 100 100 100
Pareto (10) 84 86 86 88 88 90 100 100 100 100 100 100 100 100 100 100 100 100
Lognormal 89 91 91 92 92 93 100 100 100 100 100 100 100 100 100 100 100 100
Chi-Squared (1) 96 97 97 98 98 98 100 100 100 100 100 100 100 100 100 100 100 100
Extreme Value Type 2(1) 99 99 99 99 99 99 100 100 100 100 100 100 100 100 100 100 100 100
aw, Weibull Position; F, Filliben test; W', Shapiro—Francia test; B, Blom position; H, Hazen position; S, Shapiro—Wilk test.
The American Statistician, February 1985, Vol. 39, No. | 77



Table 2. Empirical Percentage Points for Correlation Coefficient Test Based on Blom’s Plotting Position

Level
n .000 .005 .010 .025 .050 .100 .250 .500 .750 .900 .950 .975 .990 .995
3 .866 .867 .869 .872 .879 .891 .924 .966 .992 .999 .9997 .9999 1.000 1.000
4 .785 .813 .824 .846 .868 .894 .931 .958 .979 .992 .996 .998 .999 1.000
5 729 .807 .826 .856 .880 .903 .934 .960 977 .988 .992 .995 .997 .998
6 .686 .820 .838 .866 .888 910 .939 .962 977 .986 .990 .993 .996 .997
7 .651 .828 .850 877 .898 918 .944 .964 .978 .986 .990 .992 .995 .996
8 .623 .840 .861 .887 .906 .924 .948 .966 .978 .986 .990 .992 .994 .995
9 .599 .854 .871 .894 912 .930 .952 .968 .980 .986 .990 .992 .994 .995
10 .578 .862 .879 .901 918 .934 .954 .970 .980 .987 .990 .992 .994 .995
11 .560 .870 .886 .907 .923 .938 .957 .972 .981 .987 .990 .992 .994 .995
12 544 .876 .892 912 .928 .942 .960 .973 .982 .988 .990 .992 .994 .995
13 .529 .885 .899 918 .932 .945 .962 974 .983 .988 .991 .992 .994 .995
14 .516 .890 .905 .923 .935 .948 .964 .976 .984 .989 .991 .992 .994 .995
15 .504 .896 .910 .927 .939 .951 .965 .977 .984 .989 .991 .993 .994 .995
16 .493 .899 913 .929 .941 .953 .967 .978 .985 .989 .991 .993 .994 .995
17 .483 .905 917 .932 .944 .954 .968 .979 .986 .990 .992 .993 .994 .995
18 473 .908 .920 .935 .946 .957 .970 .979 .986 .990 .992 .993 .9945 .9952
19 .465 914 .924 .938 .949 .958 .971 .980 .987 .990 .992 .993 .9946 .9953
20 457 916 .926 .940 .951 .960 .972 .981 .987 .991 .992 .994 .9947 .9954
21 .449 918 .930 .943 .952 .961 .973 .982 .987 .991 .993 .994 .995 .996
22 .442 .923 .933 .945 .954 .963 974 .982 .988 .991 .993 .994 .995 .996
23 .435 .925 .935 .947 .956 .964 .975 .983 .988 .991 .993 .994 .995 .996
24 .429 .927 .937 .949 .957 .965 .976 .983 .988 .992 .993 .994 .995 .996
25 422 .929 .939 .951 .959 .966 .976 .984 .989 .992 .993 .994 .995 .996
26 417 .932 941 .952 .960 .967 977 .984 .989 .992 .993 .994 .995 .996
27 411 .934 .943 .953 .961 .968 .978 .985 .989 .992 .994 .995 .9955 .9960
28 .406 .936 .944 .955 .962 .969 .978 .985 .990 .992 .994 .995 .9955 .9960
29 .401 .939 .946 .956 .963 .970 .979 .985 .990 .993 .994 995 .9956 .9961
30 .396 .939 .947 .957 .964 971 .979 .986 .990 .993 .994 .995 .9957 .9962
31 .392 .942 .950 .958 .965 972 .980 .986 .990 .993 .994 .995 .9957 .9962
32 .387 .943 .950 .959 .966 972 .980 .987 .991 .993 .994 .995 .9958 .9963
33 .383 .944 .951 .961 .967 .973 .981 .987 .991 .993 .994 .995 .9959 .9963
34 .379 .946 953 .962 .968 974 .981 .987 .991 .993 .994 .995 .996 .997
35 .375 .947 .954 .962 .969 .974 .982 .987 .991 .994 .9945 .9953 .996 .997
36 .371 .948 .955 .963 .969 .975 .982 .988 .991 .994 .9946 .9954 .996 .997
37 .368 .950 .956 .964 .970 .976 .983 .988 .991 .994 .995 .9955 .9962 .997
38 .364 .951 .957 .965 .971 .976 .983 .988 .992 .994 .995 .9956 .9963 .997
39 .361 .951 .958 .966 971 977 .983 .988 .992 .994 .995 .9957 .9963 .997
40 .358 .953 .959 .966 972 977 .984 .989 .992 .994 .995 .9957 .9964 .997
41 .354 .953 .960 .967 .973 977 .984 .989 .992 .994 .995 .996 .9965 .9968
42 .351 .954 .961 .968 .973 .978 .984 .989 .992 .994 .995 .996 .9965 .9969
43 .348 .956 .961 .968 .974 .978 .984 .989 .992 .994 .995 .996 .9966 .9969
44 .346 .957 .962 .969 974 .979 .985 .989 .993 .9945 .9953 .996 .9966 .9970
45 .343 .957 .963 .969 .974 .979 .985 .990 .993 .9945 .9954 .996 .9966 .9970
46 .340 .958 .963 .970 .975 .980 .985 .990 .993 995 .9955 .9961 .9968 .9971
47 .337 .959 .965 971 976 .980 .986 .990 .993 .995 .9956 .9962 .9968 .9972
48 .335 .959 .965 .971 .976 .980 .986 .990 .993 .995 .9956 .9962 .9968 9972
49 .332 .961 .966 972 .976 .981 .986 .990 .993 .995 .9957 .9963 .9968 .9972
50 .330 .961 .966 .972 .977 .981 .986 .990 .993 .995 .9957 .9963 .9969 .9972
55 319 .965 .969 .974 .979 .982 .987 .991 .994 .995 .996 .9966 .9971 .9974
60 .309 .967 .971 .976 .980 .984 .988 .992 .994 .9956 .9963 .9968 .9973 .9975
65 .300 .969 .973 .978 .981 .985 .989 .992 .994 .996 .9965 .9969 .9974 .9977
70 .292 971 975 .979 .983 .986 .990 .993 .995 .996 .9966 .9971 .9975 .9978
75 .284 .973 .976 .981 .984 .987 .990 .993 .995 .996 .9968 .9972 .9976 .9979
80 .277 .975 .978 .982 .985 .987 .991 .993 .995 .996 .9970 .9974 .9978 .9980
85 .271 .976 .979 .983 .985 .988 .991 .994 .996 .9966 .9971 9975 .9979 .9981
90 .266 .977 .980 .984 .986 .988 .992 .994 .996 .9967 .9972 .9976 .9979 .9981
95 .260 .979 .981 .984 .987 .989 .992 .994 .996 .9969 .9973 .9977 .9980 .9982
100 .255 .979 .982 .985 .987 .989 .992 .995 .996 .9970 .9974 .9978 .9981 .9983

gorithm provided by Royston (1982a). Published percentage
points provided by Filliben were used for the Filliben test
(Filliben 1975, p. 113). Percentage points for the Shapiro—
Wilk test were not required; instead, p values were calcu-
lated by using an algorithm provided by Royston (1982b).

The empirical power comparisons for these tests were
conducted by generating N = 1,000 samples of sizes n =
20, 50, and 100 from each of the 25 alternative distributions
used for n = 50 in Filliben’s study. The required uniform
random numbers were generated by using the algorithm
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presented by Wichmann and Hill (1982) and the normal
random numbers were generated by using the GRAND gen-
erator (Brent 1974). The power calculations were smoothed
by replicating the experiment 12 times and taking the av-
erage.

5. DISCUSSION

In this article, we have examined the use of the correlation
coefficient as a technique for summarizing the information



contained in probability plots. We constructed a test statistic
in this manner for the three most commonly used probability
plotting positions for the normal distribution: p; = (i — .5)/
n (Hazen 1914), p; = i/(n + 1) (Weibull 1939), and p; =
(i — .375)/(n + .25) (Blom 1958). The null distribution
of each of the resulting test statistics was determined by
using empirical sampling methods, and the tests were com-
pared in terms of power against various alternative distri-
butions. Also included in the comparison were the Shapiro—
Francia (1972) and Filliben (1975) tests for normality, both
of which are based on correlation coefficients that are cal-
culated from rather unrealistic versions of probability plots.
To determine how well the power of the correlation coef-
ficient tests compares with that of the other tests for nor-
mality, the Shapiro—Wilk (1965) test was also included in
this study.

Our results indicate that the Blom plotting position p; =
(i — .375)/((n + .25) yields a correlation coefficient test
that is more powerful overall than either the Shapiro—Fran-
cia or Filliben tests. This test also compares favorably with
those based on the Hazen position p; = (i — .5)/n and the
Weibull position p; = i/(n + 1). Furthermore, compari-
sons with the Shapiro—Wilk test indicate that the correlation
coefficient test based on Blom’s position compares favor-
ably with goodness-of-fit tests for normality that are not
calculated by using the correlation coefficient.

[Received March 1984. Revised July 1984.]
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