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Exploratory Repeated Measures Analysis for

Two or More Groups
Review and Update

STEPHEN W. LOONEY and WILLIAM B. STANLEY *

In this article, the exploratory analysis of data from a re-
peated measures design with one repeated factor and one
treatment factor is considered. Recent developments in re-
peated measures analysis are reviewed and incorporated into
an overall strategy for the analysis of such data. An example
is given to illustrate the techniques.

KEY WORDS: Adjusted F tests; Interaction; MANOVA;
Multiple comparisons; Profile analysis.

1. INTRODUCTION

The repeated measures design is one of the most widely
used experimental designs, especially in educational and
psychological research. A special type of repeated measures
design that is frequently used by researchers is one in which
there is one repeated factor (the trials factor) and one treat-
ment factor (the groups factor). Unfortunately, most ex-
perimental design textbooks give inadequate coverage to
two important aspects of the exploratory analysis of data
from such a design: (a) the choice of the appropriate tech-
niques for testing the trial X group interaction effect and
the trial main effect and (b) the appropriate analysis to be
used if the trial X group interaction is found to be signif-
icant. [For an exception, see Kirk (1982, chap. 11).] In this
article, we address both (a) and (b) and suggest a plan of
analysis that incorporates recent developments in repeated
measures research. The methodology is illustrated using a
set of hypothetical data. The presentation is similar to that
of Barcikowski and Robey (1984), who considered repeated
measures designs for a single group.

2. REVIEW OF REPEATED MEASURES
TECHNIQUES

2.1 Hypotheses To Be Tested

Suppose that observations are obtained on p trials for
each of n subjects that are divided into g groups, with n;
subjects in Group i (1 =7 = g). The hypotheses to be tested
in the exploratory analysis of a repeated measures design
of this type are usually stated as follows:
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Horg: There is no trial X group interaction.
Hyg: There is no group effect.
Hor:  There is no trial effect. 2.1)

Sometimes, the vector of scores for a given subject is re-
ferred to as its profile and the analysis of the data from the
repeated measures design is referred to as profile analysis
(see Harris 1975, pp. 80—-84 and 106—108; Morrison 1976,
pp- 153-160 and 205-216).

It is important to note the hierarchical nature of the tests
of Horg, Hog, and Hyr; namely, Hypg must always be
tested first. If Hop is not rejected, then one proceeds di-
rectly to tests of Hyg and Hyy, followed by the appropriate
multiple comparisons. If, on the other hand, Hyy s is re-
jected, then the presence of significant interaction makes it
illogical to test either Hyg or Hyp in the form given in (2.1)
(Harris 1975, p. 81). This does not mean that no tests of
the group or trial effects can be performed, but that the
hypotheses H, and H are not the appropriate hypotheses
to test. Alternative techniques for testing the group and trial
effects in this case are considered in Section 3.3. The hi-
erarchical nature of H,yg, Hog, and Hyr has been ignored
by most authors; a notable exception is Rogan, Keselman,
and Mendoza (1979, p. 280).

2.2 Hypothesis Testing Procedures

One approach to analyzing the data from the type of
repeated measures design considered here is to proceed as
in a three-factor mixed model analysis of variance with
group and trial being treated as completely crossed fixed
factors and subjects being treated as a random factor nested
within the group factor (Winer 1971, pp. 518-539). If the
trial effects do not satisfy certain “validity conditions” (Huynh
and Feldt 1970; Rouanet and Lepine 1970), however, the
distributions of the F ratios for testing H,;; and H,r will
be distorted, resulting in too frequent rejection of these null
hypotheses (Box 1954; Imhof 1962; Huynh and Feldt 1980;
Rogan et al. 1979). These validity conditions, which are
sometimes referred to as multisample sphericity, can be
summarized as follows: (a) the covariance matrices for a
suitable set of orthonormalized trial variables must be equal
across all levels of the group factor, and (b) the common
covariance matrix of these variables must satisfy the spher-
icity assumption (Huynh 1978, p. 161). In addition to mul-
tisample sphericity, the assumption is made that the
observations in each group follow a multivariate normal
distribution (Scheffe 1959, p. 269).

Several alternatives for testing H,r; and H, have been
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proposed for those cases in which the trial effects do not
satisfy the validity conditions. The most commonly used of
these are the various adjustments to the univariate approach
and the use of multivariate analysis of variance (MAN-
OVA). The adjusted univariate approaches involve using
the usual F values for testing Hyyg and Hor and modifying
the respective degrees of freedom for these test statistics by
multiplying them by some estimate of the Geisser—Green-
house adjustment factor ¢ (Geisser and Greenhouse 1958,
pp. 885-886), which is equal to 1 if the validity conditions
are satisfied. In other words, the calculated value of the test
statistic F,; is compared with F[1 — «; €'v,, €' v,], where
« is the significance level, ¢ is some estimate of ¢, and v,
and v, are the numerator and denominator degrees of free-
dom, respectively, for F.,;. The F tests for the hypotheses
are then performed using the adjusted degrees of freedom.
The estimates of ¢ that will be considered in this article are
(a) e = 1/(p— 1), the Geisser—Greenhouse (1958, p. 886)
conservative estimate; (b) ¢, the estimate considered by Col-
lier, Baker, Mandeville, and Hayes (1967, p. 343); and
(c) &, the estimate proposed by Huynh and Feldt (1976, p.
75). We also consider the multivariate approach to testing
H 1 and H or; see Greenhouse and Geisser (1959, pp. 105—
110) and McCall and Appelbaum (1973, pp. 406—413) for
details.

Several authors have compared the various techniques for
analyzing repeated measures data. McCall and Appelbaum
(1973, p. 414) discussed the relative advantages of the un-
adjusted, e-adjusted, and £-adjusted univariate tests and the
multivariate tests of H,yc and Hop and concluded that the
multivariate approach is the best choice when # is large or
when the validity conditions are subject to doubt. More
recent studies have indicated, however, that certain adjusted
univariate procedures can be preferable to the multivariate
approach even under these circumstances. For example,
Rogan et al. (1979) concluded that (a) for £ > .75, the -
adjusted procedure is the most powerful test of H,;; and
H oy, followed by the é-adjusted and multivariate tests; (b) for
e < .75, the multivariate tests are consistently the most
powerful, followed by the é and é-adjusted F tests; and
(c) if the parent population is nonnormal [ x*(3)], then better
control of Type I error is achieved by adopting either of the
adjusted univariate procedures in favor of the multivariate
one. In addition, Maxwell and Arvey (1982) concluded that
(a) for g = 2, the e-adjusted F test is preferable to the é-
adjusted F; (b) for g > 2, the ¢-adjusted F test tends to be
conservative, whereas the é—adjusted F test tends to be lib-
eral; and (c) either the & or s-adjusted F tests can yield
reasonable results even when the multivariate test cannot be
applied (e.g., when n — g < p — 1). These results are con-
sistent with those given by Huynh (1978). The work of all
of these authors was taken into account in the analysis pro-
cedure recommended in Section 3.

3. RECOMMENDED ANALYSIS PROCEDURES

3.1 Test of No Trial X Group Interaction

The first step in the exploratory analysis of data from a
repeated measures design of the type considered here is to
test Hyr . Because the univariate and multivariate tests can

differ markedly in the type of departures from the null hy-
pothesis that they are able to detect (Davidson 1972; Imhof
1962; Jensen 1982), we suggest that one follow the rec-
ommendation of Rouanet and Lepine (1970, p. 161) and
perform both a univariate test and a multivariate test of this
hypothesis. This approach is further supported by the results
of McCall and Applebaum (1973), Romaniuk, Levin, and
Hubert (1977), Rogan et al. (1979), and Maxwell and Arvey
(1982). We recommend that one allocate half the desired
significance level for testing Hyrc to each test. In other
words, if «a denotes the desired significance level, we sug-
gest that one test Hyp at level «/2 using the appropriate
multivariate test and also at level /2 using the appropriate
univariate test. Hypothesis Hyzs is then rejected if either
test is significant. This approach will guarantee that the
overall significance level is no greater than «; however, the
power of such a testing procedure has yet to be compared
with that of the individual univariate and multivariate tests.
Nevertheless, in lieu of a satisfactory criterion for choosing
between the two competing approaches, this allocation of
significance level seems to be a reasonable compromise.

Several authors (e.g., Huynh and Mandeville 1979; Wi-
ner 1971, pp. 595-596) have suggested that univariate test-
ing of repeated measures hypotheses be preceded by tests
of the validity conditions to determine whether one should
use an adjusted F test instead of the unadjusted test. We do
not recommend that one perform these validity tests, how-
ever, since it has been shown that they are of no practical
use for this purpose (Davidson 1972; Keselman, Rogan,
Mendoza, and Breen 1980). Instead, we suggest the fol-
lowing three-step procedure originally proposed by Green-
house and Geisser (1959), subsequently recommended by
Rogan et al. (1979) and Keselman et al. (1980), and mod-
ified using the results of Maxwell and Arvey (1982).

The hypothesis H g is first tested using the F' test with
the conservative adjustment, ¢ = 1/(p —1). If the calcu-
lated F value is significant using the e-adjusted degrees of
freedom, then the result would also be significant using the
unadjusted, é-adjusted, or é-adjusted degrees of freedom
and no further univariate testing is required (Greenhouse
and Geisser 1959, p. 110). Similarly, if the F' value is not
significant using the unadjusted degrees of freedom, then
the result also would not be significant using any adjusted
degrees of freedom and, again, no further univariate testing
is required. If the calculated F' value is significant using the
unadjusted degrees of freedom, but not significant using the
e-adjusted degrees of freedom, then we make the following
recommendation based on the results of Rogan et al. (1979)
and Maxwell and Arvey (1982): Use the e-adjusted F test
if g = 2 or if it is known that € = .75; otherwise use the
more conservative € adjustment. Thus one should use the
¢ adjustment if g > 2 and nothing is known about &, as is
usually the case (Rogan et al. 1979, pp. 283—-284).

As stated earlier, we recommend that one also test H g
at level a/2 using the appropriate multivariate test. In par-
ticular, Hotelling’s T is used to test Hyyg in the case of
g = 2 groups (Harris 1975, pp. 82-83). If g > 2, then one
of the general techniques for testing a multivariate linear
hypothesis can be used to test Hyyg; we suggest that one
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use the Pillai—Bartlett trace criterion (Bartlett 1939; Pillai
1955), as recommended by Olsen (1975, p. 583).

As mentioned in Section 2.1, the choice of the appropriate
tests for hypotheses Hy and Hyr depends on the results of
the test of Hyrg. We consider this issue in the following
two sections.

3.2 No Significant Trial X Group Interaction

If Hyzc is not rejected, then an additive model is appro-
priate and the tests of Hyr and Hy can be accomplished
by performing tests on the marginal means. For testing the
trial effects, the same strategy used in testing H o7 is applied
to Hyr. The recommendations concerning the choice of a
univariate test for testing Hyr¢ also apply when testing H7;
as before, this test is applied at level a/2. For the multi-
variate test, Hotelling’s T is used to test H, for any number
of groups (Harris 1975, pp. 107-108). We recommend that
this test also be performed at level «/2. [Note that this
strategy is consistent with that proposed by Barcikowski and
Robey (1984, pp. 149-150) for testing the trial effect hy-
pothesis in the case of a single group.] The union—inter-
section principle (Roy and Bose 1953) can be used to construct
simultaneous tests of the contrasts of interest among the
marginal trial means, as recommended by Morrison (1976,
pp. 134—136) and Boik (1981, p. 254). Alternatively, one
can apply the Bonferroni approach using robust tests for
marginal trial means based on individual estimates of the
contrast variances (Keselman, Rogan, and Games 1981, pp.
166—167), as recommended by Maxwell (1980) and Ke-
selman (1982). It should be noted, however, that the use
of this approach may result in seriously inflated Type I error
rates, especially under certain combinations of unequal group
sizes and unequal covariance matrices across groups (Ke-
selman and Keselman 1988, p. 223).

As far as Hg is concerned, the univariate F' test needs
no adjustment (Greenhouse and Geisser 1959, p. 101). This
hypothesis can be tested using the usual analysis of variance
(ANOVA) F test on the means of the sum of the p responses
(Harris 1975, pp. 83 and 107), provided that the underlying
assumptions of normality and homogeneity of variances across
groups appear to be satisfied. If these assumptions are vi-
olated, robust alternatives are available; see Brown and For-
sythe (1974). An appropriate multiple comparison procedure
should be used to test the contrasts of interest when g > 2.
[See Kirk (1982, pp. 106—126) for details. ]

3.3 Significant Trial X Group Interaction

As indicated in Section 2.1, if Hygg is rejected, then it
is not appropriate to test either H,; or Hyy in the form given
in (2.1). One alternative is to attempt to find a transfor-
mation of the multivariate data so that the test of Hy using
the transformed data is no longer significant. [See Andrews,
Gnanadesikan, and Warner (1971) for an approach to this
problem.] If a transformation can be found, then one pro-
ceeds as in Section 3.2. If not, we recommend that one
follow the suggestion of Morrison (1976, p. 208) and test
the hypothesis of equal group means separately for each
trial using the usual ANOVA F test. Similarly, the hypoth-
esis of equal trial means can be tested separately within each
group using the univariate and multivariate repeated mea-
sures techniques described earlier for testing Hyy. It is im-
portant to note, however, that there are certain circumstances
under which it will be known that the validity conditions
are trivially satisfied for the trial effects within each group
(e.g., when p = 2). In this case, one should proceed directly
to the unadjusted F test of the trial effect and dispense with
the three-step procedure described in Section 3.1.

Once the appropriate testing procedures have been se-
lected, we suggest using a significance level of a/p for tests
of the group effect at each level of the trial effect and a/g
for tests of the trial effect at each level of the group effect
to adequately control the familywise error rates. (For our
purposes, a “family” is defined to be the collection of tests
associated with a particular factor: there are p such tests for
the group factor and g such tests for the trial factor.) Such
stringent control of the error rate may lead to extremely low
power in detecting small-size treatment effects (Keselman
and Keselman 1987), and the investigator should carefully
consider the relative costs of Type I and Type II errors
before specifying «. [See Kirk (1982, pp. 365-371) for
alternative approaches to partitioning the error rate among
the tests of the trial effects for each group and among the
tests of the group effects for each trial.] Robust multiple
comparison methods based on individual estimates of the
contrast variances (Keselman et al. 1981, pp. 168—169) can
be used to test the contrasts of interest among the group or
trial means within each level of the remaining factor.

An alternative to performing a separate test of equal group
means for each trial is found by thinking of Hy in terms
of the MANOVA hypothesis of equality of g vectors of p-
variate means, as follows:

Table 1. Hypothetical Data for Repeated Measures Design
Group 1 Group 2 Group 3
Subject Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3
1 128 116 206 134 100 152 112 112 244
2 140 108 246 142 124 192 120 104 284
3 108 140 154 162 84 100 140 136 192
4 96 76 94 110 88 40 88 72 132
5 96 88 142 114 96 88 92 84 180
6 88 112 198 122 72 144 100 108 236
7 84 104 74 122 60 20 100 100 112
8 136 100 118 134 124 64 112 96 156
9 116 140 234 166 92 180 144 136 272
10 108 116 174 154 100 120 132 112 212
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Hipy = po =0 = g,

where w; = [M;1, M2, - - -5 Myl (1 =0 = g). Presence of
significant interaction indicates that this hypothesis should
be rejected. (If H is true, p; = py;forall 1 =i</=g,
1 =j = p, and this would indicate no interaction.) Hence
a union—intersection confidence region can be constructed
for all differences p; — p; (1 = i<l=g 1l =j=p)
to determine which groups are different for each trial (Mor-
rison 1976, pp. 138 and 199). An alternative approach,
which might be considerably more powerful, would be to
use a Bonferroni region instead of the union—intersection
region.

4. EXAMPLE

Consider the hypothetical data given in Table 1 for a
repeated measures design in which there are three groups
and three trials. Suppose that one is interested in testing the
trial X group interaction, trial effect, and group effect. In
addition, suppose that if significant trial or group effects
are found, it will be of interest to test all possible pairwise
comparisons among the levels of the significant factor.

A convenient graphical technique for comparing groups
of repeated measurements is to plot the average score on
each trial for each group separately and then connect the
points. Such a plot is presented in Figure 1 for the data in
Table 1. Based on a visual inspection of these graphs, it
appears that there are differences among the population pro-
files of the three groups of subjects, including a significant
trial X group interaction.

Since the techniques that we have discussed here are based
on the assumption of normality, an attempt was made to
verify this assumption. Accordingly, the Shapiro—Wilk (1965)
W test was performed for each of the three variates sepa-
rately, and marginal normality appears to be a reasonable
assumption for each one. (The p values are .49, .66, and
.92, respectively.) Royston’s (1983) procedure for combin-
ing these marginal results into a test for multivariate nor-
mality also indicated no significant departure (p = .88). A
similar analysis was performed within each group, and no
apparent departures from multivariate normality were de-
tected.

To apply the multivariate test of Hyr, the assumption of
equal covariance matrices across the three groups for the
successive differences of the original repeated measures must
be verified. Box’s (1949) modified M criterion indicated no
departure from this assumption (p = .22), so we may apply
the Pillai—Bartlett test to Hyyg, yielding F(4, 54) = 7.36,
p = .00008. The conservative e-adjusted F test of Hyrg
yields F(2, 27) = 9.90, p = .0006, indicating that any
univariate F test of Hyrg would be significant at any level
of @ = .0006. Using a per-hypothesis error rate of .05, we
see that both the univariate and multivariate tests are sig-
nificant at level .05/2 = .025, and we conclude that there
is a significant trial X group interaction. Hence we test for
equal group effects separately for each trial and for equal
trial effects separately for each group. The results of this
analysis for the group effects are as follows: F(2, 27) =
5.05, p = .014, for Trial 1; F(2, 27) = 1.71, p = .200,
for Trial 2; and F(2, 27) = 6.34, p = .006, for Trial 3.
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Figure 1. Interaction Plot for Hypothetical Data.

Using a significance level of « = .05/3 = .017 for the tests
at each trial, we conclude that there are significant differ-
ences among the groups for Trials 1 and 3. In Table 2, we
present the results for the tests of pairwise comparisons of
group means at each trial using the robust method described
by Keselman et al. (1981, p. 169). Using a two-tailed per-
comparison error rate of .05/(3 X 3) = .006, we find a
significant difference only for Groups 2 and 3 at Trial 3
(p = .002).

To test for equal trial effects separately for each group,
we apply both the univariate and multivariate procedures,
using a significance level of .05/(3 X 2) = .008 for each
one. For Group 1, the unadjusted F test is significant at this
level [F(2, 18) = 10.29, p = .001], but the e-adjusted F
test is not [F(1, 9) = 10.29, p = .011]. Using the rec-
ommendation given in Section 3, since nothing is known
about the population value of &, we rely on the e-adjusted
F test (¢ = .69): F(1.38, 12.39) = 10.29, p = .004.
Therefore, the appropriate adjusted F test of equal trial
effects is significant for Group 1 at the .008 level. The
Hotellirig T? test, however, is not significant: F(2, 8) =
5.48, p = .032. Nevertheless, following the strategy in
Section 3, we conclude that there is a significant difference
among the trials in Group 1. In Group 2, the unadjusted F'
test is not significant [F(2, 18) = 4.48, p = .026], but the
Hotelling T2 test is [F(2, 8) = 13.22, p = .003]. In ac-
cordance with the strategy outlined in Section 3, we con-
clude that there is also a significant trial effect in Group 2.

Table 2. Two-Tailed p Values for Pairwise Comparisons of
Group Means at Each Trial

Trial
Group comparison 1 2 3
1 versus 2 .009 .093 .052
1 versus 3 .655 .663 161
2 versus 3 .023 .200 .002
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Table 3. Two-Tailed p Values for Pairwise Comparisons of Trial
Means in Each Group

Group
Trial comparison 1 2 3
1 versus 2 1.000 .001 .021
1 versus 3 .008 136 <.001
2 versus 3 .007 .370 <.001

For Group 3, both the e-adjusted F test [F(1, 9) = 33.60,
p = .0003] and the Hotelling 77 test [F(2, 8) 19.43,
p = .0008] are significant at the .008 level. Thus a sig-
nificant difference among the trials is also indicated for
Group 3. In Table 3, we present the results for the tests of
pairwise comparisons of trial means in each group using the
robust method described by Keselman et al. (1981, p. 169).
Using a two-tailed per-comparison error rate of .05/(3 X
3) = .006, we find that Trials 1 and 2 are significantly
different in Group 2 and that Trial 3 is significantly different
from Trials 1 and 2 in Group 3.

In summary, our analysis leads to the following conclu-
sions: (a) there is a significant trial X group interaction,
(b) Groups 2 and 3 are significantly different at Trial 3,
(c) Trials 1 and 2 are significantly different in Group 2, and
(d) Trial 3 is significantly different from Trials 1 and 2 in
Group 3. No other significant differences could be found.

Il

5. SUMMARY

In this article we have reviewed recent developments in
repeated measures methodology and incorporated these into
a framework for the exploratory analysis of data from re-
peated measures designs with a single repeated factor (trial)
and a single nonrepeated factor (group). These develop-
ments include new advances in adjusting the univariate F
tests for these designs, as well as results on the relative
merits of the univariate approaches versus the multivariate
approach. We suggest that one use appropriate univariate
tests as well as multivariate tests, since the sensitivities of
the univariate and multivariate approaches are not related
in any consistent way. We have also made recommendations
concerning the appropriate analysis to be used in the pres-
ence of significant trial X group interaction, and we illus-
trated our proposed strategy with an example.

[Received August 1986. Revised March 1989.]
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